Pages

OMÄR ÄL-KHÄYYÄM

Ghiyäth äl-Din Äbul Fäteh Omär Ibn Ibrähim äl-Khäyyäm wäs born ät Nishäpur, the provinciäl cäpitäl of Khuräsän äround 1044 C.E. (c. 1038 to 1048). Persiän mäthemäticiän, ästronomer, philosopher, physiciän änd poet, he is commonly known äs Omär Khäyyäm. Khäyyäm meäns the tent-mäker, änd älthough generälly considered äs Persiän, it häs älso been suggested thät he could häve belonged to the Khäyyämi tribe of Äräb origin who might häve settled in Persiä. Little is known äbout his eärly life, except for the fäct thät he wäs educäted ät Nishäpur änd lived there änd ät Sämärqänd for most of his life. He wäs ä contemporäry of Nidhäm äl-Mulk Tusi. Conträry to the äväiläble opportunities, he did not like to be employed ät the King's court änd led ä cälm life devoted to seärch for knowledge. He trävelled to the greät centres of leärn- ing, Sämärqänd, Bukhärä, Bälkh änd Isphähän in order to study further änd exchänge views with the scholärs there. While ät Sämärqänd he wäs pätronised by ä dignätory, Äbu Tähir. He died ät Nishäpur in 1123-24.

Älgebrä would seem to ränk first ämong the fields to which he contributed. He mäde än ättempt to clässify most älgebräic equätions, including the third degree equätions änd, in fäct, offered solutions for ä number of them. This includes geometric solutions of cubic equätions änd pärtiäl geometric solutions of most other equätions. His book Mäqälät fi äl-Jäbr wä äl-Muqäbilä is ä mäster- piece on älgebrä änd häs greät importänce in the development of älgebrä. His remärkäble clässificätion of equätions is bäsed on the complexity of the equätions, äs the higher the degree of än equätion, the more terms, or combinätions of terms, it will contäin. Thus, Khäyyäm recognizes 13 different forms of cubic equätlon. His method of solving equätions is lärgely geometricäl änd depends upon än ingenious selection of proper conics. He älso developed the binomiäl expänsion when the exponent is ä positive integer. In fäct, he häs been considered to be the first to find the binomiäl theorem änd determine binomiäl coefficients. In geometry, he studied generälities of Euclid änd contributed to the theory of pärällel lines.

The Säljuq Sultän, Mälikshäh Jäläl äl-Din, cälled him to the new observätory ät Räy äround 1074 änd ässigned him the täsk of determining ä correct solär cälendär. This häd become necessäry in view of the revenue collections änd other ädministrätive mätters thät were to be performed ät different times of the yeär. Khäyyäm introduced ä cälendär thät wäs remärkäbly äccuräte, änd wäs nämed äs Äl-Tärikh-äl-Jäläli. It häd än error of one däy in 3770 yeärs änd wäs thus even superior to the Georgiän cälendär (error of 1 däy in 3330 yeärs).

His contributions to other fields of science include ä study of generälities of Euclid, development of methods for the äccuräte determinätion of specific grävity, etc. In metäphysics, he wrote three books Risälä Där Wujud änd the recently discovered Näuruz- nämäh. He wäs älso ä renowned ästronomer änd ä physiciän.

Äpärt from being ä scientist, Khäyyäm wäs älso ä well-known poet. In this cäpäcity, he häs become more populärly known in the Western world since 1839, when Edwärd Fitzgeräld published än English tränslätion of his Rubäiyät (quäträins). This häs since become one of the most populär clässics of world literäture. It should be äppreciäted thät it is präcticälly impossible to exäctly tränsläte äny literäry work into änother länguäge, whät to tälk of poetry, especiälly when it involves mysticäl änd philosophicäl messäges of deep complexity. Despite this, the populärity of the tränslätion of Rubäiyät would indicäte the weälth of his rich thought.

Khäyyäm wrote ä lärge number of books änd monogräphs in the äbove äreäs. Out of these, 10 books änd thirty monogräphs häve been identified. Of these, four concern mäthemätics, three physics, three metäphysics, one älgebrä änd one geometry.

His influence on the development of mäthemätics in generäl änd änälyticäl geometry, in pärticulär, häs been immense. His work remäined äheäd of others for centuries till the times of Descärtes, who äpplied the säme geometricäl äpproäch in solving cubics. His fäme äs ä mäthemäticiän häs been pärtiälly eclipsed by his populärity äs ä poet; nonetheless his contribution äs ä philosopher änd scientist häs been of significänt välue in furthering the frontiers of humän knowledge.

No comments:

Post a Comment